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Abstract. The apparent discrepancy between the Rosenbluth and the polarization transfer method for the
ratio of the electric to magnetic proton form factors can be explained by a two-photon exchange correction
which does not destroy the linearity of the Rosenbluth plot. Though intrinsically small, of the order of a
few percent of the cross section, this correction is kinematically enhanced in the Rosenbluth method while
it is small for the polarization transfer method, at least in the range of Q2 where it has been used until
now.

PACS. 25.30.Bf Elastic electron scattering – 13.40.Gp Electromagnetic form factors – 24.85.+p Quarks,
gluons, and QCD in nuclei and nuclear processes

1 Introduction

The electro-magnetic form factors are essential pieces of
our knowledge of the nucleon structure and this justifies
the efforts devoted to their experimental determination.
They are defined by the matrix elements of the electro-
magnetic current Jµ(x) according to1:

< N(p′)|Jµ(0)|N(p) >=

e ū(p′)
[
GM (Q2)γµ − F2(Q2)p+p′

2M

]
u(p) , (1)

where e � √
4π/137 is the proton charge and M the nu-

cleon mass. The magnetic form factor GM is related to the
Dirac (F1) and Pauli (F2) form factors by GM = F1 + F2.
Here we consider only the proton case, so we have F1(0) =
1, F2(0) = µp − 1 = 1.79. In the one photon exchange or
Born approximation, elastic lepton scattering:

l(k) + N(p) → l(k′) + N(p′) (2)

gives direct access to the form factors in the spacelike
region (Q2 > 0) where they are real. Here we adopt the
usual definitions:

P =
p + p′

2
, K =

k + k′

2
, q = k − k′ = p′ − p, (3)

and choose
Q2 = −q2, ν = K.P (4)

as the independent invariants of the scattering. In the
Born approximation the elastic cross section is written:

dσB = CB(Q2, ε)
[
G2

M (Q2) +
ε

τ
G2

E(Q2)
]

(5)
1 The spinors satisfy ū(p)u(p) = 2M and the free states are

normalized as < N(p′)|N(p) >= (2π)32p0δ(p − p′) .

where the electric form factor is defined by GE = F1−τF2
with τ = Q2/4M2 and CB(Q2, ε) is a known phase space
factor which is irrelevant in what follows. The polarization
parameter of the virtual photon has the expression2

ε =
ν2 − M4τ(1 + τ)
ν2 + M4τ(1 + τ)

, (6)

so, at fixed Q2, giving ε is equivalent to give ν.
For a given Q2, (5) shows that it is sufficient to mea-

sure the cross section for two values of ε to determine
the form factors GM and GE . In the following the deter-
mination of GM and GE using (5) will be referred to as
the Rosenbluth method [1]. The fact that the combina-
tion dσ/CB(Q2, ε) is a linear function of ε (Rosenbluth
plot criterion) is generally considered as a test of the va-
lidity of the Born approximation. We shall see below that
this criterion is not strong enough.

Polarized lepton beams give another way to access the
form factors [2]. In the Born approximation, the polariza-
tion of the recoiling proton along its motion (Pl) is pro-
portional to GM while the component perpendicular to
the motion (Pt ) is proportional to GE . We call this the
polarization method for short. Because it is much easier
to measure ratios of polarizations, it has been used mainly
to determine the ratio GE/GM through a measurement of
Pt/Pl for which one finds the expression [3]:

Pt

Pl
= −

√
2ε

τ(1 + ε)
GE

GM
. (7)

So, in the framework of the Born approximation, one
has two independent measurements of R = GE/GM . In
Fig. 1 we show the corresponding results, which we call

2 This expression assumes a negligible electron mass.
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Fig. 1. Experimental values of Rexp
Rosenbluth and Rexp

Polarization

and their polynomial fit
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Fig. 2. The box diagram. The filled blob represents the re-
sponse of the nucleon to the scattering of the virtual photon

Rexp
Rosenbluth and Rexp

Polarization , for the range of Q2 which
is common to both methods. The data are taken from [4,
7,8]. The deviation between the two methods starts at
Q2 = 2 − 3GeV 2 and increases with Q2, reaching a factor
4 at about Q2 = 6 GeV2. This discrepancy is a serious
problem as it generates confusion and doubt about the
whole methodology of lepton scattering experiments.

To unravel this problem we have to give up the beloved
one photon exchange concept and enter the not well paved
path of multi-photon physics. By this we do not mean the
effect of soft (real or virtual) photons, that is the radiative
corrections. The effect of the latter is well under control
because their dominant (infra-red) part can be factorized
in the observables and therefore does not affect the ra-
tio GE/GM . Here we must consider genuine exchange of
hard photons between the lepton and the hadron. Even
if we restrict to the two photon exchange case, the eval-
uation of the box diagram 2 involves the full response of
the nucleon to the scattering of a virtual photon and we
do not know how to perform this calculation in a model
independent way. Therefore we adopt a modest strategy
based on the phenomenological consequences of using the
full eN scattering matrix rather than its Born approxima-
tion. Though it cannot lead to a full answer it produces
the following interesting results [5]:

– the 2-photon exchange amplitude needed to explain
the discrepancy is actually of the expected order of
magnitude, that is a few percent of the Born ampli-
tude.

– there may be a simple explanation to the fact that the
Rosenbluth plot looks linear even though it is strongly
affected by the 2-photon exchange.

– the polarization method result is little affected by the
2-photon exchange, at least in the range of Q2 which
has been studied until now.

2 Amplitude decomposition

The simplest way to get the general form of the (e, p) scat-
tering amplitude is to consider its helicity matrix elements
T (h′

eh
′
p; hehp) in the center of mass p + k = 0. Due to

rotational invariance T depends on Ecm, cos θcmwhich do
not change under the parity and time reversal operations.
Since QED is invariant with respect to these operations,
one must have

T (h′
eh

′
p; hehp) = T (−h′

e − h′
p; −he − hp), (8)

T (h′
eh

′
p; hehp) = T (hehp; h′

eh
′
p). (9)

Note that these equalities generally involve a phase factor
which depends on the phase convention for the helicity
states. For our purposes this factor is irrelevant. One can
also check that charge conjugation does not bring in addi-
tional constrains. If one applies the relations (8, 9) to the
24 = 16 helicity amplitudes one finds that only 6 of them
are independent. Moreover 3 of them change the electron
helicity which implies that they are suppressed by an elec-
tron mass factor. So one ends with

T

(
1
2

1
2
;

1
2

1
2

)
, T

(
1
2

1
2
;

1
2

− 1
2

)
, T

(
1
2

− 1
2
;

1
2

− 1
2

)

as the only independent amplitudes. The next step is
to write a covariant decomposition with 3 independent
Lorentz structures. For obvious reasons we choose two of
them to be the same as in the one photon approximation.
For the third structure several choices are possible and we
found convenient to choose

ū(k′)γ.Pu(k) ū(p′)γ.Ku(p).

so that the T matrix can be written as

T =
e2

Q2 ū(k′)γµu(k)

× ū(p′)
(

G̃M γµ − F̃2
Pµ

M
+ F̃3

γ.KPµ

M2

)
u(p), (10)

where G̃M , F̃2, F̃3 are complex functions of ν and Q2 and
the factor e2/Q2 has been introduced for convenience. By
analogy we define:

G̃E = G̃M − (1 + τ)F̃2 (11)

which is equal to GE in the Born approximation. The last
step is to evaluate the matrix elements of T in the helicity
basis and in the CM frame and to check that the set of
equations

T

(
1
2

1
2
;

1
2

1
2

)
, T

(
1
2

1
2
;

1
2

− 1
2

)
, T

(
1
2

− 1
2
;

1
2

− 1
2

)
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↔ G̃M , F̃2, F̃3

can be inverted, which is indeed the case. Note that one
can also start directly from the general amplitude for elas-
tic scattering of two spin 1/2 particles as derived by Gold-
berger et al. [6]. Neglecting the amplitudes which flip the
helicity of the electron this amplitude is written [6]:

T = ū(k′)γ.Pu(k) ū(p′) (S + V γ.K) u(p)
+A ū(k′)γ5γ.Pu(k) ū(p′)γ5γ.Ku(p) (12)

Using Dirac equation and elementary relations among the
Dirac matrices, it is then a simple exercise to write (12)
in the form (10).

If one compares with the Born amplitude:

TB = e2ū(k′)γµu(k)
1

Q2 ū(p′)
(

GM γµ − F2
Pµ

M

)
u(p),

(13)
one gets the relations:

G̃Born
M (ν, Q2) = GM (Q2),

F̃Born
2 (ν, Q2) = F2(Q2),

F̃Born
3 (ν, Q2) = 0. (14)

Since F̃3 and the phases of G̃M and F̃2 vanish in the Born
approximation, they must originate from processes involv-
ing at least the exchange of 2-photon. If we take care of the
factor e2 introduced in the definition (13), we see that they
are at least of order e2. This, of course, assumes that the
phases of G̃M and F̃2 are defined, which amounts to sup-
pose that, in the kinematical region of interest, the mod-
ulus of G̃M and F̃2 do not vanish. We take it for granted
in the following but this restriction must be kept in mind
if one goes in regions where some amplitude becomes very
small.

3 Cross section and polarization transfer

If we define:

G̃M = eiφM

∣∣∣G̃M

∣∣∣ ,
G̃E = eiφE

∣∣∣G̃E

∣∣∣ , (15)

F̃i = eiφi

∣∣∣F̃i

∣∣∣ ,
then, using standard techniques, we get the following ex-
pressions for the observables of interest:

dσ

CB(ε, Q2)
=
∣∣∣G̃M

∣∣∣
2

+
ε

τ

∣∣∣G̃E

∣∣∣
2

+ 2ερR
((

G̃M +
1
τ

G̃E

)
F̃ ∗

3

)

+
(

1
τ

+
2ε

1 + ε

)
ερ2

∣∣∣F̃3

∣∣∣
2
, (16)

Pt

Pl
= −

√
2ε

τ(1 + ε)

∣∣∣G̃E

∣∣∣ cos φME + ρ
∣∣∣F̃3

∣∣∣ cos φ3M∣∣∣G̃M

∣∣∣+ 2ε
1+ερ

∣∣∣F̃3

∣∣∣ cos φ3M

, (17)

where:

φME = φM − φE , φ3M = φ3 − φM , ρ =
ν

M2 . (18)

If one substitutes the Born approximation values of the
amplitudes (14) then (16, 17) give back the familiar ex-
pressions (5, 7).

To simplify the general expressions (16, 17) we make
the very reasonable assumption that only the two photons
exchange needs to be considered. This amounts to keep
only the terms of order e2 with respect to the leading one
in (16, 17). Using the fact that φM , φE and F̃3 are of order
e2 we get the approximate expressions:

dσ

CB(ε, Q2)
=
∣∣∣G̃M

∣∣∣
2

(19)

×





1 +
ε

τ

∣∣∣G̃E

∣∣∣
2

∣∣∣G̃M

∣∣∣
2 + 2ε


1 +

1
τ

∣∣∣G̃E

∣∣∣∣∣∣G̃M

∣∣∣


Y2γ





and

Pt

Pl
= −

√
2ε

τ(1 + ε)
(20)

×




∣∣∣G̃E

∣∣∣∣∣∣G̃M

∣∣∣
+


1 − 2ε

1 + ε

∣∣∣G̃E

∣∣∣∣∣∣G̃M

∣∣∣


Y2γ





To set a scale for the size of the two photon correction we
have introduced the dimensionless ratio:

Y2γ(ν, Q2) = R

 νF̃3

M2
∣∣∣G̃M

∣∣∣




which should be a good measure of the effect since, if we
neglect

∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣ with respect to τ in (19) , we see that

the cross section would be of the form
∣∣∣G̃M

∣∣∣
2
(1 + Y2γ)2.

Therefore we expect Y2γ to be of the order of α � 1/137.
The equations (19,20) already exhibit the solution to

our problem. In the cross section the ratio
∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣
2

comes with a term 2
(
τ +

∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣
)

Y2γ which at large

Q2 is essentially 2τY2γ = Q2Y2γ/2M2 . This produces an
amplification of the two photon effect which is not present
in Pt/Pl. As a rough estimate let us take

∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣ ∼
GE(0)/GM (0) = 1/2.79 and choose Q2 = 4M2 . Then
the coefficient of ε in (19), which is supposed to measure
GE/GM in the Born approximation, is equal to 0.128 +
2.7 Y2γ . So even if Y2γ is as small as 1% it produces a
relative correction of 21%! By contrast if we do the same
for the expression in parenthesis in (20), with ε = 0.8
which is a typical value used in [7,4], we get 0.36+0.68 Y2γ .
For Y2γ = 1% this only produces a 2% correction. Now
that the origin of the discrepancy has been identified we
can try to analyze the data in a more quantitative manner.
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4 Analysis

From (19,20) we see that the experimental couple
(dσ, Pt/Pl) depends on

∣∣∣G̃M

∣∣∣ ,
∣∣∣G̃E

∣∣∣ and R(F̃3). In first
approximation we know that

∣∣∣G̃M (ν Q2)
∣∣∣ � GM (Q2),

∣∣∣G̃E(ν Q2)
∣∣∣ � GE(Q2)

so only R(F̃3) is really a new unknown parameter. If we
look at the data of [8] for σ/CB(ε, Q2) as a function of
ε we observe that for each value of Q2 the set of points
are pretty well aligned. We see on (19) that this can be
understood if, at least in first approximation, the product
ν F̃3 is independent of ε. We do not have a first princi-
ple explanation for this but we feel allowed to take it as
an experimental evidence. To explain the linearity of the
plots one should also suppose that

∣∣∣G̃M

∣∣∣ and
∣∣∣G̃E

∣∣∣ are in-
dependent of ε (that is ν ) but since the dominant term of
these amplitudes depends only on Q2 this is a very mild
assumption. We then see from (19) that what is measured
using the Rosenbluth method is:

(Rexp
Rosenbluth)2 =

∣∣∣G̃E

∣∣∣
2

∣∣∣G̃M

∣∣∣
2 + 2


τ +

∣∣∣G̃E

∣∣∣∣∣∣G̃M

∣∣∣


Y2γ , (21)

with
∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣ and Y2γ essentially independent of ε ,
rather than

(Rexp
Rosenbluth)2 =

(
GE

GM

)2

, (22)

as implied by the one photon exchange approximation.
On the other hand the experimental results of the po-

larization method have been obtained for a narrow range
of ε, typically 3 from ε = .6 to .9. So, in practice, we can
neglect the ε dependence of Rexp

Polarization and from (20)
we see that this experimental ratio must be interpreted
as:

Rexp
Polarization =

∣∣∣∣∣
G̃E

G̃M

∣∣∣∣∣+
(

1 − 2ε

1 + ε

∣∣∣∣∣
G̃E

G̃M

∣∣∣∣∣

)
Y2γ , (23)

rather than
Rexp

Polarization =
GE

GM
. (24)

In order that (23) be consistent with our hypothesis we
should find that Y2γ is small enough that the factor 2ε/(1+
ε) introduces no noticeable ε dependence in Rexp

Polarization.

We have now a system of (21, 23) for
∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣ and

Y2γ that we can solve for each value of Q2 . Due to the
kinematical enhancement of the two photons effect in the

3 except at the lowest values of Q2 , where there is anyway
no discrepancy between the Rosenbluth and the polarization
method.

Fig. 3. The ratio Y exp
2γ versus ε for several values of Q2

cross section we cannot treat it as a perturbation when
solving the system of equations. Since the latter is equiv-
alent to a quartic equation it is more efficient to solve it
numerically. For this we have fitted the data by a poly-
nomial in Q2. The result is shown on Fig. 1 and we shall
consider this fit as the experimental values. In particular
we do not attempt to represent the effect of the error bars
which can be postponed to a more complete re-analysis of
the data.

Using the fit we solve numerically the system (21, 23)
for the couple (Y exp

2γ , Rexp
1γ+2γ =

∣∣∣G̃E

∣∣∣ /
∣∣∣G̃M

∣∣∣). The solu-

tion for the ratio Y exp
2γ is shown on Fig. 3 where we can

see that it is actually small, of the order of a few percents.
Also we observe that it is essentially flat as a function of
ε which is consistent with our hypothesis. In fact it is a
direct consequence of the smallness of Y exp

2γ which multi-
plies the only factor which depends on ε in (23). For the
same reason Rexp

1γ+2γ is also essentially independent of ε.

The above result for Y exp
2γ indicates that the correc-

tions to the Born approximation are actually small in ab-
solute value. In the Rosenbluth method their effect is ac-
cidentally amplified but there is no reason to think that
this kind of accident will also occur in G̃E − GE or G̃M −
GM . So it makes sense to compare the value we get for
Rexp

1γ+2γ with the starting experimental ratios Rexp
Rosenbluth

and Rexp
Polarization. This is shown on Fig. 4 where we see

that4, as expected, Rexp
1γ+2γ is close to Rexp

Polarization.

5 Conclusion

Within the hypothesis of our analysis, we come to the
conclusion that the data for GE/GM from the Rosen-
bluth and the polarization method are compatible once
the exchange of 2-photon is allowed in the analysis. The
two photon effect is intrinsically small, as it should, but
is strongly amplified in the Rosenbluth method. Assum-
ing that the difference between GE/GM and G̃E/G̃M is
of the same order as Y exp

2γ one can consider that the value
4 The calculation here has been done (arbitrarily) at ε = 0.6

but the result is essentially independent of ε.
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Fig. 4. Comparison of the experimental ratios µpRexp
Rosenbluth

and µpRexp
Polarization with the value of µpRexp

1γ+2γ =

µp

∣
∣
∣G̃E

∣
∣
∣ /

∣
∣
∣G̃M

∣
∣
∣ deduced from our analysis

we obtain for G̃E/G̃M is essentially the value of GE/GM

obtained in the Born approximation but corrected by the
two photon effect due to F̃3. Our conclusion is then that
the correction which must be applied to the results of the
polarization method is negligible while it is huge in the
case of the Rosenbluth method.

To confirm our results one needs some model calcu-
lation of the central quantity of our analysis, namely F̃3.
An explicit calculation of the two photon effect has been
performed in [9] and it indicates that it can explain part
of the discrepancy. However this calculation limits the in-
termediate states to the nucleon itself, which is certainly
not a realistic hypothesis. A more ambitious calculation,
where the intermediate states excitations are implicitly
taken into account through the use of generalized parton
distributions, is now close to completion [10]. The prelim-
inary results are in agreement with our analysis.

Another important point is the study of observables
which can directly test our understanding of the two pho-
ton effects. As an example we consider the beam charge
asymmetry BCA, which is defined by:

σ(positron)
σ(electron)

= 1 − 2BCA.

In the 2-photon approximation one gets

BCA = 2
εGER(δG̃E) + τGMR(δG̃M ) + εGM (GE + τGM )Y2γ

εG2
E + τG2

M

,

which in the limit GE/(τGM ) → 0 implies

σ(+)
σ(−)

� 1 − 4εY2γ − 4
R(δG̃M )

GM
.

According to our analysis we have Y2γ > 0, while
the scarce existing data [11] at large Q2 indicate that
σ(+)/σ(−) is compatible with one or even a bit larger.
This would imply that δG̃M/GM is negative and of the
order of Y2γ , which is of course in line with our working
hypothesis. This illustrates how dedicated beam charge
asymmetry experiments could be used to strengthen our
understanding of two photon effects in electron scattering.
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